Pythagorean Theorem

- ExPressions, equations, and
relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to: (C) use models and diagrams to explain the Pythagorean theorem.
- Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (c) use the Pythagorean Theorem and its converse to solve problems

Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to: (D) determine the distance between two points on a coordinate plane using the Pythagorean Theorem.

My teacher's Pythagorean Theorem goals for me are that... I will be able to:

- model the Pythagorean Theorem using squares.
- solve problems using the Pythagorean Theorem.
- use the Pythagopean Theopem to calculate the distance between two points on a graph.

I will achieve the learning goal(s) for the Pythagorean Theorem by:

1) \qquad
2) \qquad
3) \qquad

Sq	Square	rean Theorem
Numbers such as 1, 4, 9, 16, and 25 are called perfect squares. Examples: $\begin{aligned} & 3^{2}=3 \times 3=9 \\ & 5^{2}=5 \times 5=25 \\ & 8^{2}=8 \times 8=64 \end{aligned}$ Write three of your own examples: 1. 2. 3.	The opposite of squaring a number is finding the square root. The square root of a number is one of its two equal factors. The symbol $\sqrt{ }$, radical sign, is used to indicate a square root. Examples: $\sqrt{16}=4$, because $4 \times 4=16$ $\sqrt{49}=7$, because $7 \times 7=49$ Write three of your own examples: 1. 2. 3.	The Pythagorean Theorem describes the relationship between the lengths of the legs and the hypotenuse for any righ \neq friangle. You can use the Pythagorean Theorem to find the length of a side of a right triangle when you know the other two sides.

Pythagorean Theorem....Notes

The Pythagorean Theorem describes the relationship between the lengths of the legs and the hypotenuse for any right triangle.
In a right triangle, the sides that are adjacent to (touching) the right angle are called legs.

The side opposite the right angle is the hypotenuse.

Modeling the Pythagorean Theorem

What does this mean for the Pythagorean Theorem?

If the sides of a triangle have lengths a, b, and c units such that $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle.

I do... and you follow along and process Modeling the Pythagorean Theorem

